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§57) 1) b) By Cauchy Integral Formula,
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e) By Cauchy Integral Formula,
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857) 2) b) By Cauchy Integral Formula,
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§57) 4) If z is inside C, by Cauchy Integral Formula,
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If z is outside C', then the integrand is analytic on and inside C'. By Cauchy-Goursat Theorem, we
have g(z) = 0.
§57) 5) Case 1: Assume that z is inside C.

By Cauchy Integral Formula, we have
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Similarly, we also have
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Altogether we have
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Case 2: Assume that zg is outside C.
Since the integrands on both sides are analytic on and inside C, by Cauchy-Goursat Theorem, both

of them are zeros. In particular they are equal.

857) 7) For any real number a, by Cauchy Integral Formula, we have
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On the other hand, we also have
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As a result, by comparing the imaginary part, we have
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Finally, since the integrand is an even function, we have
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§59) 1) Consider the function g(z) = exp[f(z)]. Since f(z) is entire, g(z) is also entire.

Furthermore,

lg(2)] = |exp[f(2)]| = exp(Re f(2)) < exp(ug) for any z € C. Therefore, by Liouville’s Theorem,

g(z) must be a constant function, i.e. g(z) = C for some constant C € C. In particular, we have

f(z) €logC =1n|C| +iarg C. Then by continuity, f(z) must be a constant function.

§59) 4) Note that |f(2)|? = sin?z + sinh®y. For z € [0, 2], the maximum of sin®z is sm2(72r) =1. On

the other hand, for y € [0, 1], since sinh?y is a strictly increasing function in y, the maximum of

sinh?y is sinh? 1. Overall, the maximum of the modulus of the function f(z) in R attains at the

int 7T +i
oint — + 1.
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§61) 3) Given that lim z, = z. Then for any € > 0, 3N € N such that |z, — z| < € for any n > N. In
n—oo
particular, for any n > N, we have ||z,| — 2| < |z, — 2| < e. This proves that lim |z,| = |zo].
n—oo
) Since Z 2= Whenever |z| < 1, put z = re?® with 0 <7 < 1. Then we have
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By comparing the real and imaginary part on both sides, we get

ir" cos(nd) = M and Zr sin(nd) = rsinf
~ 1—2rcosf+1r2 —

The equations are clearly true when r = 0.
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